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Abstract-The thermal response behavior of incompressible, uniform property, laminar boundary 
layer flows over wedges has been investigated using a technique recently proposed by Chao and Cheema. 
Both the surface response characteristics and details of the transient temperature fields, subsequent to a 
step change in either the surface temperature or surface heat flux, are obtained. Results are presented for 
Prandtl numbers of 0.01, @l, 0.72, 1.0, 10 and 100 and for wedges with /3 = -0.1, 0, 0*1,0.2,03 and 1.0, 
x/? being the wedge angle. Revealing physical insight is gained by comparing the data for small times with 
pure conduction transients and the steady state data with those deduced for vanishingly small Prandtl 

number and for large Prandtl number. 

NOMENCLATURE 

z 

= f “(0); 

dimensionless stream function ; 

ill, 

k, 

z, 

T 
t, 
u, 
u, 
0, 
x, 
Y9 
l(t), 

thermal conductivity ; 
Nusselt number, defined in (31); 
parameter in Laplace transform ; 
Prandtl number ; 
heat flux at wall ; 
Reynolds number, = Ux/v ; 
temperature ; 
time ; 
velocity at edge of boundary layer; 
velocity component in x-direction ; 
velocity component in y-direction; 
coordinate along wedge surface ; 
coordinate normal to wedge surface ; 
Heaviside unit operator, = 0 for 
t<Oand=lfort>O; 
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erfc x, 

1” erfc x, 

complementary error function, 

a, 

=- Jn Xe-azda; 
s 

nth repeated integral of the comple- 
mentary error function, 

= 4 1-l erfc 01 da, n = 1,2,. . . . 

Greek symbols 
wedge angle divided by A; 

gamma function, = 1 Cr- ’ e-” da; 

incomplete gamma function, 

= ~d-le-ada; 

dimensionless coordinate, defined in 

(6); 
dimensionless temperature, defined 
in (13a) or (13b); 
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thermal diffusivity ; 
a parametric function, first intro- 
duced in (21); 

I4 dynamic viscosity ; 

V, kinematic viscosity ; 

7, dimensionless time, defined in (12). 

Subscripts 
s, 
W, 
00, 

steady state ; 
wall ; 
free stream condition ; 

Also, ’ denotes differentiation with respect 
to tl and a superscript numeral (‘) denotes the 
order of differentiation. 

1. INTRODUCTION 

THE GENERAL problem of treating unsteady, 
convective heat-transfer processes between a 
flowing fluid and its solid bounding surface due 
to changing flow velocity and thermal condition 
is highly complicated. In this investigation, we 
restrict ourselves to the determination of the 
entire time-history of the heat-transfer process 
in Falkner-Skan flows subsequent to a step 
change in the wedge’s surface temperature or 
heat flux The method of analysis parallels that 
used in [l] with improvement introduced in the 
formulation and in the computation procedure. 
As a result, the technique is set on a firmer 
foundation. In addition to the surface response 
characteristics, details of the transient tempera- 
ture fields are also obtained. The essential 
features of the solution technique are : 

(a) Transformation of the energy equation in 
the Laplace transform variable to a suit- 
able form for which an appropriate series 
solution can be constructed. 

(b) The introduction of a certain function, 
initially unknown, into the series expansion 
with the consequence that the solution 
becomes valid for all times. 

It has recently been demonstrated in one case 
that the mathematical accuracy of the method 
is quite satisfactory [2]. 

2. GOVERNING EQUATIONS 

We consider two-dimensional, laminar, in- 
compressible boundary layers over a wedge of 
included angle xb, placed symmetrically in a 
uniform main stream. The flow is steady, has a 
constant free stream temperature T,, and is of 
negligible dissipation. Initially, the wedge sur- 
face temperature is also T,. At time t = 0, the 
wedge surface undergoes a step change in 
temperature or in heat flux The applied thermal 
disturbance is limited in that changes in fluid 
properties are negligible. The physical model 
and the coordinate system are illustrated in 
Fig. 1. 

FIG. 1. Flow past a wedge. In the neighborhood of the front 
stagnation, the potential velocity distribution is V(x) = Cx”, 

m = 8/(2 - B). 

The continuity and momentum equations for 
the stated boundary layer flow are 

!!+!!LO 
ax ay 

at4 au du a$ 
u-+v--_u-++v 

ax ay dx ay (2) 

where U(X) is the velocity outside the boundary 
layer. It is well known that 

U(X) = Cx” with m = b/(2 - 8) 

and C is a constant. (3) 

The solution of (1) and (2) under the boundary 
conditions 

u(x, 0) = u(x, 0) = 0; u(x, co) = U(x) (4) 
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is Consequently, (9) becomes 

u = Vj-‘, 
m+lvU + u=- -- ( ) 2 x 

( l-m 
f----d’ 

l+m ) 
(5) 

in which the similarity variable q is defined as 

m+lU * 
q=y -- ( > 2 vx (6) 

and the dimensionless stream function f(q) 
satisfies the Falkner-Skan equation 

f”’ + fl” + /I?[ 1 - (f’)“] = 0 (7) 

with 

f(0) = f’(0) = 0; f’(co) = 1. (8) 

The energy boundary-layer equation is 

aT aT aT a2T 
~+u;i;E+vay=“ayz. (9) 

For the problem under consideration, the initial 
condition is 

T(x, y, 0) = T, (10) 

and the boundary conditions are : 

(a) for a step change in surface temperature 

T(x,O, t) = T, + (T, - T,) l(t); 

T(x, co, t) = T, (114 

(b) for a step change in surface flux 

z (x, 0, t) = - F l(t); 

T(x, 00, t) = T,. (lib) 

To transform the energy equation into an 
appropriate dimensionless form, we define 

z=(m+ l)Z 
X 

(12) 

and, for case (a), a dimensionless temperature 

(134 

=!?!+p,fE 
au2 atl 

(14) 

with 

e(%O) = 0; e(O, r) = l(r), 

For case (b), we define 

e(a3, z) = 0. 

(15) 

“-m UW 

and (9) transforms to 

(16) 

with 

e(%O) = 0; ; (0, r) = - l(z), 

e(co,r) = 0. (17) 

For stagnation flow, m = 1 and (14) becomes 
identical to (16) as expected. For flow past a 
flat plate, m = 0 and the two energy equations 
reduce to those given in [l]. 

The range of r which is of interest here spans 
from 0 to co, and f’ is a monotonically increas- 
ing function of tf, starting from 0 at q = 0 and 
asymptotically approaches unity as q --) 00. For 
boundary layers which remain attached to the 
wedge surface, m has the theoretical lower limit 
of -0.091 which corresponds to /I = -0.199. 
Let us now consider the case m < 1. Subsequent 
to the thermal disturbance, be it a step change in 
temperature or in flux, there always exists a 
region in the boundary layer for which 
( 1 - [(l - m)/(l + m)] f ‘.5} > 0. Simultaneously, 
there also exists another region for which {*} < 0. 
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When (*} = 0, the equations become singular. 
Some means of circumventing this difficulty 
must be devised if a finite difference scheme of 
integration were used. 

3. EVALUATION OF f AND ITS DERIVATIVES 

To solve the energy equations, one needs the 
information on f. In [ 11, a power series solution 
for f (the Blasius series) was employed. Such a 
series has a limited radius of convergence and, 
thus, its use is not satisfactory for low Prandtl 
number fluids. In this investigation, a simple 
step-by-step calculation scheme was adopted, 
using Taylor expansion and values of f”(0) 
reported in [3]. Highly accurate results have 
been obtained with very little computer time. 
Interested readers are referred to [4] for details. 
S&ice it to mention that with An = 0.01 for 
0 < n 6 0.1 and An = 0.05 for q > 01 the 
calculated results show almost complete agree- 
ment with data listed in [5]. Deviations, when 
present, occurs only in the seventh digit. 

4. SOLUTION METHOD AND RESULTS FOR A 

STEP CHANGE IN WALL TEMPERATURE 

We define the Laplace transform of 0(q, z) in 
the usual manner, i.e. 

and obtain from (14) and (15) 

8” + Prfl = 2Pr (1 - /3)f'F + $3 [ I_ (19) 

with 

B(0) = p-l, B(co) = 0. m 
By following the procedure expounded in 

[l, 2]*, it may be established that an appropriate 

* The formulation in [I] is not the most convenient; it has 
since been modified although the basic idea remains intact. 

series solution for (19) and (20) is 

B = p-‘exp r - q [F - (1 - p) 

w - n1 - Wr(P + 41% 

in which F = 1 f dq, Re(p) > 0 and A is a real 
‘0 

function of q, always positive, yet unknown. 
We set u0 E 1 and u,(O) = ~~(0) = . . = u,(O) = 

0; hence, t?(O) = p- ‘. We shall later 
dem:nstrate that e(m) = 0. 

Upon substituting (21) into (19) and equating 
the coefficients of like powers of (p + A), we find 

U.+_, + q (1 - p, qj-‘u:,_ 1 

- PryA’uh _2 - (n - 3) PrA’uk _ 3 

+ 7 
1 

(1 - p) [~j-” + (2n - l)f’] - f’ 

+ $ [U - B)212tf’)2 - j-‘-j 

+ 4(Y$‘)’ 
1 

u,_ r + ; [(2n - 5) ;c’ 

- (?;I’)’ - (1 - /I) Prj-‘(r&i)‘] U” _ 2 

+ 5 {Pr (rfA’)2 - (n - 3) [A” + (1 - p) 

x Prf’(ql’ + 2A)]} u,_ 3 

+ (n - $) Pr2r](A’)2 u,_~ + +(tn - 3) 

(n - 5) Pr2(A’)2 u, _ 5 (22) 

for n 2 1 and u_* = u_~ = x3 = u-4 = 0. 

The recurrent relation (22) can be integrated 
in succession, beginning with n = 1 and using 
the previously chosen boundary conditions. 
The results are 

ug z 1 \ 
u1= x, + Prtg 

u2 = X, + PrrfX,A + +Pr2q2A2 
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etc. where >(23)* For n > 2, the G,‘s are given by the following 

X1 = $ PrC(1 - B) rlf’ - fl 
integral 

+ $Pr2 I[(1 - B)‘r~~(f’)~ - f’] drl 
G, = 2”-2 {exp [(2Pr;l)*q]} f z(“/~)- l 

x2=3(x: +X;)+*Pr(l -#I) e -’ jnw2 erfc [t(2PrA)” z-)1] dz (26) 

x WG + .i)sf’ - f)-G +I ! 
etc. 

With the exception of u0 which is identically 
unity, each U, consists of two parts-one is free 
of I and is designated as X, in (23); the other is a 
polynomial of I. From the well known results 
f”(0) = a, ft3’(0) = -/3, ft4)(0) = 0, etc., a 
simple calculation shows that X,(O) = X,(O) 

. . . = 0 and X;(O) = 0, X;(O) = iaPr(l - 2#I), 
E;(O) = - &Pr/3(2 - 3/I), Xi(O) = 0, etc. To 
determine the X,‘s, a step-by-step computation 
scheme completely analogous to that for evalu- 

ating f was used The calculation began with 
X, and the step sizes were the same as those 

and, as it turned out, they are all expressible in 
terms of the four g-functions. Furthermore, it 
can be demonstrated that 

(i) G, ranges from 0 to 1 for the entire domain 
of interest, namely, 0 < r < a and 
0 < rl < co, and 

(ii) lim G, = 1 for all $s. 
I_(L) 

Our experience indicates that the foregoing 
general behavior of the G, function is inherent 
with the method of analysis and is by no means 
unique to the present problem. This fortunate 
situation enhances the usefulness of the method. 

The steady state temperature distribution 
follows from letting z -+ cc in (24). It is 

used for J: _ 
The desired transient temperature field is Url) = exp -$-(1 -B)(llf -P)l 

obtained from taking the inverse of (21), using 
the familiar translation and convolution - ;2PrA)&q 2 u,(2PrA)-“‘2. 

I 
(27) 

theorems. The result is 
n=O 

By comparing (27) with (21) we conclude that 

e(rl, r) = exp - ; [P - (1 - B) (rlf - 61 & 00) = 0, since 0x co) = 0 and Re(p) > 0. Thus, 
an earlier expectation is realized. 

- (2PrA))q f u, (2PrL)-“I2 G, (24) 
Differentiating (24) with respect to q 

n=O evaluating the result for q = 0 yield 

in which -@(O, r) = (2Pr)+(Zz)-+exp(-Az) 

* We have also evaluated u3 and u,; they are omitted 
+ (2Prl)* erf (AT)+ 

from the list in order to conserve space. It has been found that 
five terms of the series are capable of providing satisfactory 

c 

u;(O) (2Prl)- n/Z - 
results for all cases considered. 

?I= 

and 

(28) 

Go = 91 + 92, GI = 91 - 92 

G2 = Go - g3r G3 = G, + (2Pr;C)) qg3 - g, 

G4 = Go - (1 + AZ + PrLq2)g3 + &(2PrA)*qg4 
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with 

gr = 3 erfc [Pr* (22))) rj - (Lr)+] 

gz = 4 {exp [2(2Pr1)* q]} erfc [I+ (2~)~ * q + (A+] 

g3 = {exp [(2PrA)” q - Azl} erfc [I+ (22)-* q] 

g4 = 27r- + (nr)* exp { - [Pr+ (2~)~ * q - (nr))]‘}. 

(25) 

I 

in which 

u;(O) = PrA, u;(o) = $ (1 - 2/I) 

uj(0) = - g fi(2 - 38) + i Pr21C2, (284 

t&(O) = qql - 2P)L 

J 
etc. 

The steady state temperature derivative at the 
wedge surface is 

-e:(O) = (2Pr;C)* - f u~(0)(2PrA)-“/2. (29) 
n=l 

Obviously, in both (28) and (29), ;C implies L(0). 
The local transient surface flux is 

qw = - k(T, - T,) m + l lJ ( ) + ’ -Yj--- G 0 (0, r) (30) 

and the corresponding Nusselt number is 

=- Ret e’(0, T). (31) 

4.1. Steady-state solution and evaluation of ;1 
To evaluate the function n(q), we must 

separately determine the steady state tempera- 
ture field 0Xq). It is well known that 0, satisfies 
0; + Prfe; = 0, with 0x0) = 1 and &(co) = 0. 
A number of investigators have reported results 
using different solution methods. They are well 
documented in the literature. For our purpose, 
it is most convenient to use once again the 

earlier. The pertinent dimensionless wall deriva- 
tive values were taken from [3]. Eckert [6] 
reported data of 0Jq) to the fourth decimal place 
for Pr = 0.7, 10 and 10 and for /I = -0.14, 0, 
0.2, 0.5, 10 and 1.6. When our results were 
compared with his for the common values of 
Pr and #I, complete agreement (up to and includ- 
ing the fourth decimal place) was observed for 
Pr = 1. However, some minor discrepancies 
in the last digit were noted for Pr = 10. 

The numerical data so obtained for tIJq) were 
then inserted in (27) and A(q) determined there- 
from An iterative computer program was 
written for this purpose. The series in (27) is 
semi-divergent and Euler’s transformation was 
used in the evaluation of the sum. While, in 

2L 

1.0 _Pr= 0.01 

A 

p- -0.1 

“0~01 
I I I 

0.1 1.0 10 

step-by-step calculation scheme mentioned FIG. 2. Variation of n(rt) with Prandtl number (B = -0.1.03). 
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theory, the transformation can be initiated from 
any term the most satisfactory result is achieved 
by choosing a starting point which would result 
in the best convergent sequence (m the Euler 
sense) and the smallest last term, with the least 
number of transformations.* When rl = 0 the 
series in (27) becomes identically unity and 
hence it cannot be used to determine J(0). The 
latter was evaluated from (29) using the appropri- 
ate values of -0:(O) taken from [3]. Data for all 
cases of Pr and /I selected in this study may be 
found in [4]. To illustrate the general behavior 
of 1(q), we present Fig 2 which is for /3 = -0.1 
and 05. AU plots exhibit the same feature that, 
at small q, rZ is nearly a constant and it increases 
rather sharply as the edge of the thermal layer is 
approached. 

Our computer program, in its final form, 
evaluates f(q), 0Jq), X,(q) and hence u&q) for 
n = 1, 2, 3 and 4, A(q), &I, z) and the wall flux 
ratio 4w/4w,S in a single operation. Data were 
generated from an IBM 360 computer for the 
six Prandtl numbers and the six wedge angles: 
with step sizes of q identical to those used for f: 
Transient temperature fields were calculated 
for r = 001,O.l and 10. Wall fluxes wemdeter- 
mined for z ranging from Oal to 5 for Pr = 0.01 
and from ml to 40 for Pr = 100. The total 
computer time was 80st. If e(q, z) and q,,,/qW,S 
were excluded in the computation, the machine 
time was 52s. 

4.2 Transient temperaturefields 
With the evaluation of rZ, the transient 

temperature field in the boundary layer becomes 
completely determined and is given by (24). 
Likewise, the transient wall flux is given by 
(28) and (30). It should be noted that the series 
involved are not convergent. Because of the 

* Failure of strict adherence to this rule has resulted in 
errors in the values of n(O) reported in [l]. Consequently, the 
wall flux response shown in Fig. 2 of the said reference 
depicts somewhat too fast an approach to the steady state 
value. 

t The corresponding time for the case of a step change in 
wall flux was 75 s. 

procedure used in the determination of A(q), 
each necessarily possesses a limit. This may be 
seen by comparing (24) with (27) and (28) with 
(29). Like G, the ratio rAf(n/2)/r(n/2) in (28) is 
confined between 0 and 1. We may thus antici- 
pate that the series in question are semi- 
divergent and Euler transformation was used in 
the evaluation of their sum It has been con- 
sistently noted that best results are obtained 
when the transformation is applied in precisely 
the same manner as that used in the evaluation 
of 1. 

I.0 

- - 
0.8 

0.6 

d 

04 

0.6 

0 

0.4 

I 

FIG. 3. Temperature fields following a step change in wedge 
surface temperature (a) for Pr = OQl, (b) for Pr = 100. 

Extensive transient temperature field data 
have been tabulated in [5). The highlights of 
the results are graphically displayed in Figs 3a 
and 3b, respectively, for Pr = 0.01 and 100. 
The manner by which the thermal layer grows 
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with time is clearly seen. When Pr = OOl,* the 
dimensionless temperature distributions shown 
in Fig. 3a exhibit virtually no influence of /I. This 
is to be expected during early times since, then, 
the heat-transfer process is governed by molecu- 
lar diffusion. However, it is somewhat surprising 
to find that the data for different p’s fall on a 
single curve within the thickness of the line even 
when the steady condition has been re- 
established. A possible physical explanation is 
that., when this occurs, the velocity boundary 
layer is completely submerged within a small 
fraction of the thermal layer in fluid of Pr = O-01. 
To further examine the nature of the steady 
temperature field in small Prandtl number 
fluids, we consider the limiting case of Pr + 0. 
As has been pointed out in [7], under such 
circumstance we may neglect altogether the 
existence of the velocity boundary layer and 
replace the velocity components (a, u) in the 
energy equation by the following. 

u N U(x) = Cx” 

(32) 
UN -gy= -Cmfl-‘y. 

It is simple to demonstrate that the solution, 
satisfying the boundary conditions T(x, 0) = T, 
and T(x, 00) = T,is 

(33a) 

Or, equivalently, 

for Pr + 0. (33b) 

In this limiting case, the temperature field is 
expressible in terms of a single variable, 
(Pr/2)*q which does not involve v. In Fig. 3a, 
(33b) is shown plotted as tilled circles. Their 
agreement with data obtained from the present 

* All steady state or long time results reported in this 
paper for Pr = 0.01 should be interpreted with caution. The 
boundary layer approximation which is implicit in (9) may 
become poor. 

analysis for Pr = 0.01 is quite good. The local 
Nusselt number corresponding to (33b) is 

t- 
Re’Pr* , for Pr + 0. (34) 

When Pr = 100, the dimensionless tempera- 
ture distributions for various /I’s remain to lie 
in a single curve at small times but, as the steady 
state is approached, the influence of /I is clearly 
revealed. The two distributions in accelerated 
flow (B = 05 and 1.0) shown in Fig 3b lie below 
that for the flat plate (#I = 0) since a higher 
fluid acceleration facilitates convective transport 
and thus results in a steeper temperature gradient 
at the wall. 

When the thermal layer is confined within a 
small fraction of the velocity boundary layer, as 
is the case for-large Pr, the velocity field may be 
approximated by 

1 

(35) 

where z, is the local shear stress at wall. With 
this approximation, the solution of the steady 
state energy equation satisfying the simple 
boundary conditions previously stated has been 
discussed by Kestin and Persen [8]. Re-writing 
their result in terms of the present nomenclature 
gives 

8, = 1 - 3, for large Pr (36) 

where < = (aPr/6) q3 and a = f”(0). Data calcu- 
lated from (36) using the values of a listed in [3] 
are plotted as filled circles in Fig. 3b for the four 
/I’s shown. They agree well with the more 
precise distribution, particularly when fl = 0. 
This is so because a sizable portion of the Blasius 
profile adjacent to the wall is very nearly linear. 
In flows with pressure gradient, either adverse 
or favorable, the linear approximation becomes 
poorer. 
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The local Nusselt number corresponding to at T, for t > 0. In this case, the transient tem- 

(36) is perature field is 

Nu, = 0*4358&n + 1)) Ref Pr*, 

for large Pr. (37) 
*=erfc[&]=erfc[~(~)i]. (38) 

The numerical constant is the equivalence of Equation (38) suggests that, for sufficiently small 

33 * 2-*/F(1/3). To ascertain the usefulness of times, the appropriate variable of the problem 

(37), Table 1 is prepared. is Pr) qz- ! In Fig. 4, data evaluated from the 

Table 1. Values of Nu, Re-* Pr-% calculated from the approximate fonnu[a (37) and those from 
present analysis 

B -0.1 0 0.1 0.2 0.5 IQ 
_ 

Approx. for large Pr 0.2908 0.3388 0.3744 0405 1 0.4907 0.6608 

More Pr=lOO 0.2948 0.3386 0.3717 04005 0.4814 06434 
exact Pr = 10 0.2987 0.3380 0.3681 0.3945 0.4695 0.6214 
analysis Pr = 1 0.3014 0.3321 0.3562 0.3776 O+KlO 0.5705 

It is seen that (37) represents a good approxima- 
tion even for moderate Prandtl numbers, 
especially when fl = 0. 

Within a short duration subsequent to the 
initiation of the thermal disturbance, the growth 
of the boundary layer is dominated by molecular 
diffusion. Hence, one might expect that, under 
this condition, the temperature field in the 
boundary layer would differ little from that in a 
semi-infinite stationary medium initially at a 
uniform temperature T, and its surface tempera- 
ture is suddenly brought up to and maintained 

current analysis for the two extreme Prandtl 
numbers and for /I = -O.&O, 10 and z = 001, 
10 are compared with (38). At r = O-01, all data 
points fall on or very close to the pure conduc- 
tion solution. When r reaches 1.0, data for Pr = 
0.01 deviate significantly from the curve for all 
three fl’s. As expected, the largest deviation 
occurs in accelerated flow due to the relatively 
greater convection effects. On the other hand, 
data for Pr = 100 remain quite close to the 
conduction solution when r = 1.0, particularly 
for fl = -0.1 and 0. This means that the 

1.0 

0.6 

0.6 

e 

0.4 

0.2 

0 

t 

- Pure conduction solution 

f3 q erfc [T(E~“] 

0 0.2 04 0.6 0.6 1.0 1.2 1.4 

FIG. 4. Comparison of transient temperature fields with pure 
conduction solution. 
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numerical value of z beyond which the transient Details may be found in [4]. Here we merely 
behavior is no longer controlled by molecular mention that b decreases approximately linearly 
diffusion process depends on the Prandtl number with increase in j3, being 3 for fi = 0 and 4 for 
of the fluid. This value is higher for higher Pr /? = 1. When Pr is within the range of 0.72 and 
and, for a given Pr, it is somewhat less for larger j?. 100, B becomes essentially a function of fi alone. 

4.3 Transient walljlux response 
In engineering design applications, it often is 

convenient to describe the wall flux response in 
terms of the ratio of its instantaneous value to 
the steady state value, namely, qw/qW,S or, 
equivalently, Nu/Nu, This ratio may be deter- 
mined by dividing 0’(0, z) by VAO). The former is 
given by (28) and the latter is available from [3]. 
Extensive results for all combinations of j? and 
Pr have been tabulated in [4]. When they are 
plotted against z on log-log coordinates, the 
resulting curves all bear a resemblance to those 
shown in Fig. 2 of [l], which is for fi = 0. For a 
fixed Pr, increasing fi displaces the curves 
downward. This effect is most pronounced 
for Pr = 100 and gradually diminishes with 
decreasing Pr. When Pr = O-01, the said effect 
becomes insignificant. 

An expression for small time whose validity 
extends beyond that of the pure conduction 
transient can be readily obtained by introducing 
the appropriate series expansions for the ex- 
ponential, error, and incomplete gamma func- 
tions in (28). Substituting the result in (31) and 
rearranging give 

Nu[(m + 1) RePr] - * = (m)- * + 0 + 0 

- ;(2P’)-t(l - 28)~ 

1 

+ 48J7t 
- Pr- l /I(2 - 38) r* + . . . 

The first term on the right-hand side corresponds 
to the conduction transient. It is interesting to 
note that, for the several terms shown in (39), 
;C does not appear. Similar behavior has previ- 
ously been reported [l, 21. 

The calculated wall flux ratio data, q,,,/q,_ 
for all 36 combinations of fl and Pr can be 
correlated in a manner similar to that illustrated 
in Fig 3 of [l] by using an empirically defined 
time parameter of the form : 

With the results available from this study, it is 
easy to ascertain the time beyond which the wall 
flux response would significantly deviate from 
the conduction transient and the manner by 
which Pr and j? would influence such time. This 
information is provided in Fig 5. To a large 
extent, the figure is self-explanatory. The 
numerals shown under the box inscribed with 
z + 00 refer to the steady state values of 
Nu[(m + 1) RePr] -* for the several Pr’s and 
/?‘s indicated. 

[B(Pr, fi)] PrmMs) 2. 

For vamshmgly small PI 
Ordinate =li”2= 05642 

Ro. 5. Departure of surface heat flow from pure conduction 
transient. 

5.RESULTsFORA STEPCHANGEIIVWALLFLUX 

Since the procedure used is completely 
analogous to that described in Section 4, we 
shall refrain from presenting the details of the 
derivation. Interested readers may consult [4]. 

5.1 Steady state solution 
For the problem under consideration, the 

steady state temperature field satisfies 

e; + Prfe: = (1 - /I) Prf ‘(9, (40) 
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with 

e;(o) = - 1, edGo) = 0 (41) 

and (3, is defined by (13b) with T being time- 
independent. Unlike the case of uniform wall 
temperature, the solution has not been exten- 
sively reported except for /I = 0 and 1.0. 
Complete data for the profiles are available in 
[4]. Table 2 lists the wall values. At first glance, 
the data appear to lack uniformity. For Pr = 
O-01, the dimensionless wall temperature func- 
tion 13x0) increases monotonically with /I. For 
the remaining five Pr’s, it first decreases with 
increasing /I, reaches a minimum and then 
increases with further increase in j?. The percent- 
age variation is the least for Pr = 100. A more 
close examination reveals that the said minimum 
occurs at a value of fi which decreases with 
decreasing Prandtl number. For Pr = 0.01, this 
minimum is beyond the smallest /I( -0.1) investi- 
gated and thus disappears in Table 2. 

when r = l.* For higher Prandtl number fluids, 
this effect of fluid acceleration will not be felt 
until greater values of z are reached. Due to the 
imposed flux condition at wall, all curves have 
identical slope at q = 0. In comparing these 
results with those illustrated in Figs. 3a and 3b, 
one should be reminded of the basic difference 
in the definition of 0 for the two cases. 

We have also separately examined the steady 
state solution for vanishingly small Pr and for 
large hi_ when the wall flux is uniform It has 
been found that, in either case, similar solutions 
exist. However, unlike the case of uniform wall 
temperature, a plot of 8, vs. q for Pr + 0 would 
exhibit different curves for different /KS. Further- 
more, attempts to obtain closed form solutions 
failed, except for the following cases. 

(a) For Pr + 0 
(a.1) Flat plate, /I = 0. 

Here U=U, and rl = YL(U,MWI*. 

Table 2. Values off&(O) = O,,, 

0.01 909098 9.11709 9.24913 9.44376 10.32660 13.16270 
0.10 3.62785 3.52401 3.50154 3.51932 3.72022 4.55579 
0.72 1.83015 1.72519 1.68143 1.66514 1.70266 1.99428 
1.0 164137 1.54064 1.49758 1.48009 1.50651 1.75295 

10.0 0.77194 0.70861 0.67990 066551 0.66285 0.74690 
1000 0.36219 0.32859 0.31333 0.30537 0.30127 0.33469 

With the availability of &(r,+, ;C(q) can be Hence 
determined. Their general behavior is similar 
to those shown in Fig. 2. (42) 

5.2 Transient temperaturefields 
Figures 6a and 6b show the calculated results and 

for the two extreme Prandtl numbers At (43) 
sufficiently small times, data for different /I’s 
fall closely on a single curve, again manifesting 
the dominance of molecular diffusion. For 

* For clarity, data for /3 = 0.5 are left unconnected. 
t In the sense that a linear, longitudinal velocity distribu- 

Pr = O-01, the influence of #I is clearly discernible tion is a valid approximation. 
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FIG. 6. Temperature fields following a step change in wedge 
surface flux (a) for Pr = 0.01, (b) for Pr = 100. 

(a.2) Forward stagnation, b = 1. 
Here U = Cx, and q = y(C/v)*. Thus 

,N and B. T. CHAO 

and 

(45) 

(b) For large Pr. 
The only closed form solution found has 

been for the forward stagnation, fi = 1. It is 

8, = e= (&)+::)[I -$] (46) 

k C 

where a =f”(O) = 1.23259 and [ = (aPr/6)q3. 
The wall temperature is uniform and is given by 

4v.s = 
Tw - Tm ) = 1513 Pr-+. 

(7 
(47) 

4, ” -- 
k C 

It is interesting to note that f?,,, ir Pr-* when 
Pr -+ 0 and 8,,,, - Pr-* for large Pr. 

Equations (42) and (44) have been plotted 
and are shown in the insert of Fig. 6a. The data 
obtained from these equations fall below those of 
the corresponding exact solution. The discrep- 
ancy is, of course, due to the complete neglect 
of the velocity boundary layer in the limiting 
analysis. Equation (46) is shown in Fig 6b by 
the tilled circles. 

As in the previous case, the pure conduction 
solution would be a valid approximation im- 
mediately after the wall flux disturbance. It is 
given by 

4w . Y 
T - T, = k2(~t)t rerfc2(Kt)f - (48a) 

which, when reexpressed in terms of the 
dimensionless variables used in the present 
study, becomes 

In Fig. 7, a comparison is made with the presently 
calculated data for fl = -0.1, 0 and 1.0 and for 
several combinations of Pr and z giving rise 
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Fro. 7. Comparison of transient temperature fields with pure 
conduction solution. 

to r/Pr = 10m3, 10-l and 10. When z/Pr = lO_ 3, 
the agreement is very good manifesting that the 
heat transfer process closely follows that due 
to molecular diffusion alone. When z/Pr = 
lo-‘, (48b) remains to show good agreement 

with the data, except for fl = 1.0. This indicates 
that the convective influence has come into 
play in the highly accelerated flow. When 
z/Pr = 10, the conduction solution ceases to be 
useful. 

5.3 Transient wall temperature response 
The general behavior of the wall temperature 

response expressed as a ratio I?$,@,,, and plotted 
against z is similar to that displayed in Fig 4 
of [l]. For Pr = 0.01, the effect of increasing /? 
is to displace the curve downward, with the one 
for /I = -0.1 occupying the top position. For 
Pr = 100, the influence of changing fi on the 
relative displacement of the curves becomes 
small. This is in contrast to the role which Pr 
plays in influencing the effect of b on the wall 
flux behavior subsequent to a step change in 
wall temperature. At present, a satisfactory 
physical explanation is lacking. 

To illustrate the manner by which the response 
behavior deviates from the diffusion process as 
time proceeds and the extent to which /I and Pr 
exert their influence, we include Fig. 8. Finally 
we note that it has also been found possible to 
correlate all wall temperature ratio data by 
defining an empirical time parameter similar 
to but modified from that used in the previous 
case. Again, for Pr ranging from 0.72 to 100, 
the response time varies as Prb(B). 

e- 
Pure conductlon solution 

Fro. 8. Departure of wall temperature response from pure conduction transient. 
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COMPORTEMENT DE LA REPONSE THERMIQUE DES COUCHES LIMITES 
LAMINAIRES DANS L’ECOULEMENT AUTOUR DE DIEDRES 

RhmLLe comportement de la reponse thermique des tcoulements de couche limite laminaire, in- 
compressible et a proprittb uniformes sur des diedres a ttC Ctudit en employant une technique proposee 
recemment par Chao et Cheema On obtient les caracteristiques de la rtponse de surface et les details des 
champs transitoires de temperature, 21 la suite d’une variation en echelon, soit de la temperature, a la suite 
d’une variation en echelon, soit de la temperature de surface, soit du flux de chaleur a la surface. Les 
resultats sont present&s pour des nombres de Prandtl de O,Ol, O,l, 0,72, LO, 10 et 100 et pour des diedres 
avec b = -O,l, 0. O,l, 02, 0.5 et l,O, rr/? &ant l’angle du diedre. Une connaissance physique rtvelatrice 
est obtenue en comparant les resultats pour des temps faibles avec des transitoires de conduction pure et 
les resultats pour l’ttat permanent avec ceux dtduits pour des nombres de Prandtl inliniment faibles 

et pour des nombres de Prandtl Cleves. 

VERHALTEN THERMISCHER SIGNALE IN LAMINAREN GRENZSCHICHTEN 
BE1 KEILSTROMUNG 

ZnaannnenfaasnnR Es wird Verhalten thermischer Signale in inkompressiblen, laminaren Grenzschicht- 
striimungen kqnstanter Stoffeigenschaften ilber Keile untersucht, idem man ein kilrzlich von Chao und 
Cheema vorgeschlagenes Verfahren benutzt. Sowohl die Charakteristiken von OberXchensignalen als 
such Einzelheiten der instation&n Temperaturfelder als Folge einer sprunghalften Anderung entweder 
der Oberflachentemperatur oder des Wiirmestromes durch die Oberflache werden erhalten, Ergebnisse. 
werden angegeben ftir Prandtl-Zahlen von 0,Ol; 0,l; 0,72; 1,O; 10 und 100 fiir Keile mit B = - 0,l; 0; 0,l; 
0,2; 0,5 und l,O. 71 wobei /3 der Keilwinkel ist. Ein aufschlussbreicher physikalischer Einblick wird 
gewonnen, indem man die Daten fur kleine Zeiten mit reiner instationler Warmeleitung und die 
stationlren Daten mit jenen vergleicht, die fiir verschwindend kleine Prandtl-Zahlen und fiir grosse 

Prandtl-Zahlen abgeleitet sind. 

TEIIJIOBOH jIAMBHAPHbIH HOI’PAHH=IHbIH CJIOH B HJIMHE 

AmroTaqnn-Hccne~yeTcrr TenJIOBOH nahtnrrapnntt IIOrpaHHYHhIH cnoa HecHOiMaeMot 
HHI~~KOCTII B KHMHe, HcnonbsyH MeToBHKy, HeaaBKo npeBnomeHHyI0 ZIao II YIIM~M. FfonyseHn 
IIOBepXHOCTHbIe XapaHTepHCTHHH W RaHHbIe 0 HeCTaHHOHapHbiX TeMIIepaTypHbIX IIOJIHX, 
RBIRIOII&HXCR pe3yBbTaTOM CTyIIeHHaTOrO H3MeHeHUR JIH60 TeMIIepaTypbI CTeHKIi, na60 
TenJIOBOrO nOTOKa Ha noBepxKocTa. PeayJIbTaTBI II~HBO~HTCH AJIII YHCen Pr = 0,Ol ; 0,l ; 
0,72 ; 1,O ; 10 II 100 M JTXI KJIHH3 p = -0,l ; 0 ; o,l ; 0,2 ; 0,5 ; II 1 ,o I@. (DH3BueCKRt CMbICJI 
paCKpbIBaeTCR nyTdM CpaBHeHHR AaHHbIX AJIFI MaJIbIX OTpe3KOB BpeMeHH. BKJIKIHaR A3HHBIe 
&IHI IIepeXOBHbIX II CTaHHOH3pIIbIX perKHMOB C AaHHbIMH, BbIBeAeHHbIMH AJIH npeHe6pelKHMO 

Manor0 II 6onbmoro uHCeJI DpaHATJIH. 


